Using Qualia Information to Identify Lexical Semantic Classes in an Unsupervised Clustering Task
نویسندگان
چکیده
Acquiring lexical information is a complex problem, typically approached by relying on a number of contexts to contribute information for classification. One of the first issues to address in this domain is the determination of such contexts. The work presented here proposes the use of automatically obtained FORMAL role descriptors as features used to draw nouns from the same lexical semantic class together in an unsupervised clustering task. We have dealt with three lexical semantic classes (HUMAN, LOCATION and EVENT) in English. The results obtained show that it is possible to discriminate between elements from different lexical semantic classes using only FORMAL role information, hence validating our initial hypothesis. Also, iterating our method accurately accounts for fine-grained distinctions within lexical classes, namely distinctions involving ambiguous expressions. Moreover, a filtering and bootstrapping strategy employed in extracting FORMAL role descriptors proved to minimize effects of sparse data and noise in our task.
منابع مشابه
A soft-clustering algorithm for automatic induction of semantic classes
In this paper, we propose a soft-decision, unsupervised clustering algorithm that generates semantic classes automatically using the probability of class membership for each word, rather than deterministically assigning a word to a semantic class. Semantic classes are induced using an unsupervised, automatic procedure that uses a context-based similarity distance to measure semantic similarity ...
متن کاملUnsupervised Cross-Lingual Lexical Substitution
Cross-Lingual Lexical Substitution (CLLS) is the task that aims at providing for a target word in context, several alternative substitute words in another language. The proposed sets of translations may come from external resources or be extracted from textual data. In this paper, we apply for the first time an unsupervised cross-lingual WSD method to this task. The method exploits the results ...
متن کاملUnsupervised Induction of Modern Standard Arabic Verb Classes
We exploit the resources in the Arabic Treebank (ATB) for the novel task of automatically creating lexical semantic verb classes for Modern Standard Arabic (MSA). Verbs are clustered into groups that share semantic elements of meaning as they exhibit similar syntactic behavior. The results of the clustering experiments are compared with a gold standard set of classes, which is approximated by u...
متن کاملUse of unsupervised word classes for entity recognition: Application to the detection of disorders in clinical reports
Unsupervised word classes induced from unannotated text corpora are increasingly used to help tasks addressed by supervised classification, such as standard named entity detection. This paper studies the contribution of unsupervised word classes to a medical entity detection task with two specific objectives: How do unsupervised word classes compare to available knowledge-based semantic classes...
متن کاملEfficient Inference for Unsupervised Semantic Parsing
Unsupervised semantic parsing algorithms based on Bayesian nonparametric grammars offer a promising way to bootstrap semantic analyses for unsupervised relation/information extraction (RE/IE). Yet the form in which they currently exist makes it difficult to apply them to larger data sets. In this paper, we make progress toward scaling unsupervised semantic parsing by introducing a local, collap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012